Study of blood component therapy in a tertiary level care hospital in Ghaziabad

Manisha Gupta¹, Neelima Agarwal², Alpana Agrawal³, Akash Gupta⁴

¹²Professor, ³Professor and HOD, ⁴Post Graduate Resident, Dept. of Obstetrics and Gynecology, Santosh Medical College and Hospitals, Ghaziabad, Uttar Pradesh, India

*Corresponding Author: Manisha Gupta
Email: manishagz@yahoo.com

Abstract
Introduction: Pregnancy and labour present with many complications, which result in extra blood loss causing hemodynamic instability. This leads to a need of blood transfusion in the day-to-day practice of obstetrics. In a low resource country like India it becomes necessary to titrate the use of Blood components. With this in background we aim to study the usage of blood components in obstetrics in our hospital.

Methodology: It was an Observational cross sectional study. All obstetric patients who were transfused with blood components in the Department Of Obstetrics and Gynaecology in the hospital from January 2018 - September 2019 were recruited in the study. The indications, components transfused and indications of single unit transfusion were noted.

Results: Transfusion rate was found to be 3.1%. Anaemia and postpartum haemorrhage were the major causes for blood and blood product transfusion. Single unit transfusion was 55.1%. Anaemia in pregnancy was the major indication of single unit PRBC transfusion.

Conclusion: There must be a focus on reduction of unnecessary transfusions especially in conditions, which can be managed effectively by other means.

Keywords: Blood Transfusion in obstetrics, Single unit transfusion, Blood components, Active management of third stage of labour.

Introduction
Obstetric haemorrhage is a major cause of maternal mortality in Low to Medium Income Countries (LMICs) accounting for about 25-30% maternal deaths.¹

Cardiovascular adaptations during pregnancy enable the body to tolerate the blood loss during labour. Various pregnancy complications and disorders of labour present as risk factors for extra blood loss during pregnancy and cause severe hemodynamic instability. In LMICs due to high prevalence of underlying anaemia, blood loss is not tolerated well and Blood transfusion becomes life saving for the patient.

Apart from haemorrhage, other common causes requiring transfusion are anaemia, Pre-eclampsia Ruptured Ectopic, pregnancy and abortions.²³

Over the years, there has been a tendency to reduce use of blood transfusion in obstetrics. The reason for this trend being risk of transfusion especially blood borne diseases and availability of better pharmacological, surgical and mechanical innovations to reduce blood loss. In a country like India, limited and fixed resources of blood, forces us to titrate the use of Blood and its components.

There are many controversies in the transfusion practices such as single-unit versus multiple-unit transfusions, whole blood versus component usage; clinical judgement versus “trigger” haemoglobin for transfusion and varying massive transfusion protocols.²⁶

With this background this study was undertook to analyse transfusion practices in Obstetrics in this institution.

Methodology
An observational cross sectional study undertaken in the Department of Obstetrics and Gynaecology, Santosh Medical College and Hospital, Ghaziabad from January 2018 -September 2019. All patients admitted in the IPD in Department of Obstetrics and Gynaecology, were recruited in the study and those who were transfused with Blood Components during the study period were studied.

The data was collected under the following headings
1. Socio demographic details- Age, parity, education, family structure, residence
2. Menstrual History
3. Obstetric details

Present Pregnancy
Singleton/multiple pregnancy, Gestational age, antenatal /Intranatal /postnatal complications, Mode of Delivery.

Previous Obstetric history
Singleton/multiple pregnancy, Gestational age, antenatal /Intranatal /postnatal complications, Mode of Delivery. History of excessive blood loss during delivery, History of blood transfusion

Routine investigations
Complete Blood Count (CBC), Haemoglobin estimation before and after transfusion, Blood group, Platelet count, Bleeding time, clotting time, Prothrombin time and routine antenatal profile.

Blood transfusion
The indications of blood transfusion, Number and type of unit transfused, Number of patients given blood components, Indications where single unit was transfused. The data was collected and tabulated. Proportions were calculated and Statistical analysis was done using chi square test and students T test where applicable.
Results

A total of 5295 admissions occurred in Indoor Patient Department (IPD) during the study period, of which total of 163 patients were transfused with 264 units of blood components during the period making the Transfusion rate 3.1%. There was no patient found who required massive blood transfusion during the study period.

The study group comprised of majority of primigravida with mean age group of 25.6 years with maximum transfusions in the age group 21-30years as shown in Tables 1 & 2.

Table 1: Sociodemographic factors (n=163)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Variables</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Age in years Mean ± SD</td>
<td>25.56±1.15</td>
</tr>
<tr>
<td>2</td>
<td>Gestational age in Weeks ± SD</td>
<td>36.23±2.1</td>
</tr>
<tr>
<td>3</td>
<td>Primipara N (%)</td>
<td>59</td>
</tr>
<tr>
<td>4</td>
<td>Multiple Pregnancy N (%)</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Cesarean delivery N (%)</td>
<td>46</td>
</tr>
</tbody>
</table>

It was observed in this study that 82.4% patients were transfused with PRBC out of which 55.1% received single unit of PRBC. There was no cryoprecipitate transfusion as depicted in Chart 1 & 2.

Table 2

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Age Group</th>
<th>No. of Subjects</th>
<th>% Transfusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>≤ 20</td>
<td>10</td>
<td>6.1</td>
</tr>
<tr>
<td>2</td>
<td>21 - 30</td>
<td>96</td>
<td>58.9</td>
</tr>
<tr>
<td>3</td>
<td>≥ 31</td>
<td>57</td>
<td>35.0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>163</td>
<td>100.0</td>
</tr>
</tbody>
</table>

In the present study, a total of 30% transfusions were done for patients found to be anaemic with haemoglobin less than 7 gm%, most of them who were unbooked cases and diagnosed as microcytic hypochromic anaemia on peripheral blood smear. Hemodynamic instability due to excessive blood loss following caesarean deliveries was the next common reason for the transfusion, Post partum Haemorrhage, one of the leading cause of maternal mortality and morbidity constituted about 20% of the transfusions (Chart 3).

Chart 1: Analysis of blood components used (n=264)

Chart 2: Use of blood components per patient (n=163)

Chart 3: Indications of blood transfusion (n=163)

Table 3: No. of PRBC Units Transfused per patient (n=147)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>No. of Units</th>
<th>No. of Subjects</th>
<th>% Transfusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>81</td>
<td>55.1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>42</td>
<td>28.5</td>
</tr>
<tr>
<td>3</td>
<td>≥ 3</td>
<td>24</td>
<td>16.3</td>
</tr>
</tbody>
</table>

In this study, 55.1% of transfused patients received single unit of PRBC. (Table 3). Anaemia was the leading indication followed by operative procedures like caesarean...
section, Gynaecological surgeries and other pregnancy complications. (Chart 3)

Chart 3: Indications of Single unit PRBC Transfusion (n=111)

![Chart showing indications of single unit PRBC transfusion]

University Journal of Health Sciences, July-December, 2019/3(2):101-104

The mean pre-transfusion haemoglobin in single unit PRBC transfusion was 7.4 g/dL. The average post transfusion haemoglobin was 7.5 g/dL. The average gain in haemoglobin was 0.1 g/dL which was not statistically significant.

Table 4: Comparison of Hb% in pre and post single unit transfusion

<table>
<thead>
<tr>
<th>Hb Level</th>
<th>Pre Transfusion</th>
<th>Post Transfusion</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Hb</td>
<td>7.4</td>
<td>7.5</td>
<td>0.6</td>
</tr>
<tr>
<td>Highest Hb</td>
<td>8.1</td>
<td>8.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Lowest Hb</td>
<td>7.0</td>
<td>7.3</td>
<td>0.2</td>
</tr>
</tbody>
</table>

In patients who were transfused more than 1 unit of PRBC had mean Hb% of 6.4g% and post transfusion Hb% of 7.5g% with gain of 1.1g% which was found to be statistically significant.

Table 5: Comparison of Hb% in pre and post >1 unit transfusion

<table>
<thead>
<tr>
<th>Hb Level</th>
<th>Pre Transfusion</th>
<th>Post Transfusion</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Hb</td>
<td>6.4</td>
<td>7.5</td>
<td><0.0001</td>
</tr>
<tr>
<td>Highest Hb</td>
<td>8.1</td>
<td>8.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Lowest Hb</td>
<td>4.3</td>
<td>6.2</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

The transfusion rate in the present study was found 3.1%, which is in accordance with the WHO guidelines which reports transfusion rate in obstetrics to be 2–6%. It was observed in the study that 82.4% patients were transfused with PRBC, whereas in studies by Pancholi and Bangal VB et al, 46.6% and 45.81% patients were transfused with packed cell volume transfusion respectively. In another study by Chawla et al it was observed that 79% patients were transfused with packed cell volume transfusion.

The major indication for transfusion in this study was anaemia followed by PPH. In a study done by Kamani AA, it was found that uterine PPH constituted the bulk of patients and in only 12% of patients transfusions were done because of anaemia. Similar to our study Pancholi, RK Singh et al and Chawla et al reported anaemia to be the leading indication for blood transfusion followed by haemorrhage. Present study reveals that nutritional anaemia being quite rampant in this area forms the leading indication of blood transfusion. Hence there is a need for awareness and availability of pharmacological agents to combat anaemia. The other major cause is haemorrhage, which can be fought with better delivery facilities and Active Management of Third Stage of labour (AMTS). Also, the over the counter (OTC) availability of MTP pills and its unsupervised administration is another contributing factor leading to increased blood loss after incomplete abortion.

Majority of present subjects underwent single unit transfusion (55.1%) which is in contrast to the study by N. Pancholi, 18.57% of transfused patients received 1 unit; According to a study by Kamani AA, 5% of transfused patients received 1 unit; 52% of patients received 2 units. The major indication of single unit transfusion was anaemia, which is similar to other studies. But in this study it was shown that single unit transfusion was not beneficial as the difference in the pre and post transfusion mean Hb% values did not show statistical significance. Probably clinically the patient seems to be anaemic than what is documented in the Hb% report and in surgical patients it improves the tissue oxygenation and promotes better healing and improves postoperative well being. On the contrary in subjects who were transfused more than one unit constituted mostly haemorrhagic anaemia and these patients responded better as compared to single unit transfusion. Hence, it can be said that single unit transfusion is avoidable in most cases but can be considered where clinically the patient looks anaemic and Hb% should not always be the deciding factor.

Discussion

Blood transfusion is an essential component of emergency obstetric care, hence appropriate and timely transfusion helps in reduction of maternal morbidity and mortality. Blood loss during pregnancy poses difficulty due to physiological changes of pregnancy. Many guidelines have been proposed for transfusion during pregnancy. The focus has now shifted to reduce the usage of blood transfusions and stress is now laid on using preventive measures to reduce blood loss.
Conclusion
Transfusion of blood and products should be undertaken only to treat a condition that would lead to significant morbidity or mortality and that cannot be prevented or managed effectively by other pharmacological or surgical means.

Acknowledgements
Authors would like to thank the patients who agreed to participate in this study.

Source of funding
No funding sources.

Conflict of interest
None declared.

References
13. WHO. Clinical Transfusion Practice: Guidelines for Medical Interns, Available as http://www.who.int/bloodsafety/transfusion_services/ClinicalTransfusionPracticeGuidelinesforMedicalInternsBangladesh.pdf